1. Give the major product for the following reactions. (3 points each)

2. Provide the mechanisms for the following reactons (3 points each)

3. Give Names or structures for the following: (6 points)

4. <u>Separatory Funnel/Extraction</u>: Suppose the following three chemicals are initially dissolved in ether in a separatory funnel. (2 points each; there will not necessarily be something extracted in each aqueous wash, so "none" might be the correct answer.).

No reaction

No reaction

Reacts, makes 2nd layer.

Reacts, turns green/brown, precipitate forms.

- a. Identify which (if any) would <u>extract out into the aqueous layer</u> if treated with <u>basic</u> water (NaOH/H₂O).
- b. Identify which (if any) would <u>extract out into the aqueous layer</u> if treated with <u>acid water</u> (HCI/H_2O) .
- c. Identify which (if any) would <u>extract out into the aqueous layer</u> if treated with <u>neutral</u> <u>distilled water (H_2O)</u>.
- 5. Mystery Problems: Suggest a structure for an unknown A whose formula is $C_6H_{12}O_2$ and gives the following chemical test results. (4 points)
 - Formula $C_6H_{12}O_2$
 - Hydrogenation Test H₂/Pt

٠

- Chromic Acid Test H₂CrO₄
- Lucas Test HCl/ZnCl₂
- 2,4-DNP Test 2,4-dinitrophenylhydrazine Reacts, yellow precipitate
- Tollens Test $Ag(NH_3)_2^+OH^-$
 - Iodoform Test excess I₂, NaOH, H₂ No reaction
- H-NMR: 4.5 (1H, broad s), 3.9 (1H, sextet), 2.7 (2H, d), 2.3 (2H, q), 1.1 (3H, d), 1.0 (3H, t)

6. Rank the following, with 1 being highest, or most. (2 points each)

9. Of the following, which one form would exist under basic conditions? (ex, pH = 10)

- 10. Provide the reagents necessary to accomplish the following transformations (4 points each). You may use anything you wish, as big as you like.
 - Note 1: Real test will have 6 problems of this type, but I included more for practice

11. Retrosynthesis: Design syntheses of the following. (4 points each). Allowed starting materials include <u>alcohols with <5 carbons</u>; and any inorganic reagents (PCC, H₂CrO₄, PBr₃, PPh₃, BuLi, Mg, etc.)

12. Put in the starting materials for the following. (Note: May be only one chemical in several of these cases). (2 points each)

a.

b.

1. NaOH, H₂O HO → 2. HCl + H₂N _ \int_{0} 1. LiAlH₄ OH Note: Starting Material includes a ring, and has the formula $C_7H_{12}O_2$ OH 2. H₃O+ NaOCH₃ CH₃OH heat H+ റ

d.

c.

13. Predict the 1H NMR spectrum. Include the source (CH₃-1, etc); approximate chemical shifts (1's, 2's, etc.); integration (1H, 2H, etc.); and splitting (either list the number of lines, or else use letters: "s" for singlet; "d" for doublet etc.). If signals are symmetry equivalent, do not list them twice. (5 pts)

	Source	<u>Chem Shift</u>	<u>Integration</u>	<u>Splitting</u>
3 4 0 5 6 7			-	

14. Solve the structure (7pts): $C_{10}H_{12}O$ IR = 1680

